FOSS4G-BE+NL

Algorithm for network planning and design in PostGIS

Wazir Sahebali

2024-09-26

Picture by DALL-E

Context

- High coverage of high-capacity fixed broadband (>1 Gbps) for households in the Netherlands
- Government aims for full (100%) coverage of >1 Gbps fixed internet by 2030
 - Remaining households often in regions that have been skipped by commercial parties for a reason:
 - Isolated
 - Too sparsely populated
 - No demand
 - ...

Source: https://www.overalsnelinternet.nl/onderwerpe n/kaart-vaste-internetverbindingen

Project

- What would it cost to roll out fibre for these remaining household?
 - Major part of costs = distance
 - 30-50 €/m
 - So:

What is the distance required to connect the remaining households to a fibre network?

Research project: https://dialogic.nl/wp-content/uploads/2022/07/22102609bijlage-1-de-uitdagingen-van-snel-internet-in-hetbuitengebied-1.pdf

Solution I: incrementally expand

- Efficiently connect all remaining households to locations with high-speed connectivity.
- How?

dialogic

- WHILE households_remaining
 - Connect household closest to existing network
 - ST_SHORTESTLINE: draw line
 - LEFT JOIN LATERAL (ORDER BY a.geom<->b.geom): shortest pair

Solution I: incrementally expand

- Efficiently connect all remaining households to locations with high-speed connectivity.
- Issues:
 - Crossing obstacles is expensive (waterways, highways, railways, etc.)
 - As the crow flies \neq real distance (and " $*\sqrt{2}$ " is a rough estimation)

Solution II

- How?
 - Connect short distance (<40 m) households using solution I
 - Connect other household using *more realistic connections*

Enter pgRouting + OSM

Follow the shortest route (A*) along the street.

http://pgrouting.org/

https://github.com/ pgRouting/osm2pg routing

https://www.opens treetmap.org

Solution II: Routing

A. Find the household which is closest to the networkB. Connect both points to the closest road-segmentC. Find the shortest routes between the segments

Algorithm

- 1. Insert all households with high-speed internet into the network
- 2. Connect remaining households in a loop (while number of unconnected households>0)
 - a. Short distance loop (while remaining households within 40m of the network)
 - i. Incrementally add straight line from the network to the remaining household closest to the network
 - b. Find unconnected household closest to network
 - c. Find part of network which is closest to that household
 - d. Connect both respectively to their closest road segment
 - e. Calculate the shortest route
 - f. Add these lines to the network
- 3. Calculate length of the network

Solution II: Routing

Code

• Postgis procedure/function

```
CALL network_builder_proc(
    poi_schema => 'foss4g_20240926',
    poi_table => 'no_fiber_set',
    input_network_schema => 'foss4g_20240926',
    input_network_table => 'fiber_set',
    output_network_schema => 'foss4g_20240926',
    output_network_table => 'network',
    short_distance_limit => 20
);
```


Applications

dialogic

- Connecting remaining households
 - National case
 - Groningen case

- Business case smart city ring: Make or buy?
 - Different municipalities

Results

- Visualization of the network
- **Costs** of the total network
- Order of rolling out
- Most expensive routes/objects

Figuur 26. Cumulatieve graafafstand gesorteerd van adressen met de kortst naar langste afstand. (donkerblauw = de duurste 1%; donkerblauw + groen = de duurste 5%)

Issues – Less ideal routes

Issues – Too few ways-vertices

Start connection to route End connection from route Short distance connections Routing routes Ways-vertices

Issues – Slow performance

- Dense regions and incremental expansion slow down query
- Possible solutions:
 - Decrease dense input
 - We also developed a variant which:
 - Starts by clustering (ST_ClusterDBSCAN) dense regions
 - Efficiently connects the households within the cluster
 - Connects the cluster among each other by following the shortest street-route

Issues – Duplicate routes

Vazir Sahebali (sahebali@dialogic.nl)

Remaining households Households with fibre connectivity Short distance connections Routing routes